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1.0 SUMMARY

The High Pressure Earth Storable Rocket Technology (HIPES) Basic Program was
initiated in mid August 1993 and was completed on schedule in early November 1994. The
program was very successful in meeting its overall objectives.

The systems studies (Task 1) reviewed potential applications of NASA, DOD and
commercial spacecraft to assess uses for the HIPES engine. Studies of pressure-fed and
pump-fed systems for these applications were studied using both N,O4-N>H, and NyO,-
MMH. The N,0,-N,H, system indicated it provides the maximum payload for large,
medium and lightsat satellites. The major benefits of the HIPES engine are high
performance within a confined length resulting in maximization of payload for lightsats
which are volume and length constrained. The nominal engine design based on preliminary
system/engine requirements is presented as follows:

Propellants N204-N,H4
Thrust (F.) 50 Ibf
Chamber Pressure (Pc) 500 psia
Specific Impulse (Isp.) 330 Ibf-sec/lbm
Nozzle Expansion () 150

A preliminary and detailed design was developed for the HIPES engine consisting of
workhorse copper heatsink, water-cooled and rhenium thrust chambers with the flexible
TRW pintle injector. An integrated performance and thermal model developed by TRW
was used to define the attributes of the design.

The engine hardware was fabricated and tested to establish engine performance and
thermal characteristics at various chamber pressures at constant thrust. Very high
performance was achieved with thermal characteristics compatible with rhenium engine
operation. Combustion efficiency of 98.5% (ODE C¥*) was achieved and based on TDK Cf
(including boundary layer losses) indicated a vacuum specific impulse of ~337 Ibf-sec/Ibm
(e=150). The rhenium engine (bolt-on configuration) was demonstrated substantiating the
high performance and compatible thermal characteristics.




2.0 INTRODUCTION

During the past three decades, earth storable propellants, principally hydrazine(N>H,) as a
monopropellant and nitrogen tetroxide(IN,O,) - amine fuels as bipropellants, have been
used extensively in liquid propulsion systems for spacecraft applications. The technology
level for these propellants and their associated systems have been continually upgraded as
spacecraft mission demands have grown. The introduction of the dual mode (N204-N;Hy)
system concept represented one of the last significant earth storable propulsion system

~ improvements available. The dual mode system utilized a bipropellant liquid apogee engine
for apogee circularization and insertion and various forms of hydrazine thrusters for
attitude control stationkeeping. The attitude control thrusters used catalytic,
electrothermally heated monopropellant hydrazine thrusters (EHT) or higher performance
arcjets (when higher power is available) wherein the hydrazine for both the main engine
and control system (ACS) were integrated into the same tank or tanks. TRW has qualified
and flown on satellites (ANIK and Intelsat) 100 Ibf thrust (100 psia) apogee engines using
N,04-N,H, propellants demonstrating a specific impulse of 314.6 Ibf-sec/lbm. Presently,
TRW is developing an advanced dual mode liquid apogee engine operating at a specific
impulse of 328 Ibf-sec/Ibm at a chamber pressure of 125 psia and a thrust of 125 Ibf. It is
clear that little further improvements can be attained as the theoretical limit is approached.
As 98% C*(ODE) is approached and we look for other improvements, higher pressures
have been considered good candidates because of the potential for higher thrust
coefficients and C*, the enabling use of higher temperature materials, the reduced length
and volume of the engine envelope, and the potential weight savings. It has also become
clear that the use of the higher pressure engine is the only method of using the high
performance engine due to volume and length constraints on certain spacecraft
applications (i.e. small lightweight spacecraft).

The scope of the HIPES program includes four phases - basic program and three options.
The specific tasks of the basic program have been:
Task 1. System Parameter Selection

o Reviewed applications of NASA, DOD and commercial spacecraft for assessing
potential applications for the HIPES engine.

o Conducted studies of pressure-fed and pump-fed systems for these applications
and defined an operating envelope to be used for HIPES engine development.

o Recommended a program to develop the HIPES engine for use in the candidate
high pressure earth storable propulsion system.

o Submitted an informal report on the results of Task 1.




Task 2. Rocket Testbed Design

o Developed a detailed design of the HIPES engine including detailed drawings
and associated analyses after approval of the Task 1 report.

o Prepared a test plan that investigated the various performance and thermal
effects on the HIPES engine for various configurations. This plan included the
testing to accomplished for each configuration and test parameters and
associated instrumentation.

o Submitted a list of long lead items.

o Presented the design including detailed drawings and analyses at an oral
design review presentation at NASA-LeRC.

Task 3. Rocket Testbed Fabrication

o Fabricated the testbed engine after approval of the design review presentation.
Task 4. Rocket Testbed Tests

o Conducted the test program in accordance with the approve(i test plan.

o Incorporated minor hardware modifications as required and tested until the test
plan was completed.

0 Analyzed and evaluated the test data to assess performance and thermal
characteristics.

The final report presents the results of the four tasks of the basic program.




3.0 SYSTEM STUDIES

The use of high pressure earth storable propellants offered the advantage of providing
higher performance to achieve greater payload weight into orbit. This was due to the
potential for higher thrust coefficients, the enabling use of higher temperature materials,
the reduced length and volume of the engine and the potential weight savings. It was also
clear that the use of the higher pressure engine was the only method of using the higher
performance engine due to volume and length constraints on certain spacecraft
applications (in particular, small lightweight satellites). The evaluation studied the
following areas:

o Mission evaluation usage of the HIPES engine technology
o Evaluation of high pressure earth storable propellants
o Propulsion systems evaluation to maximize payload to orbit
o Preliminary system and engine requirements
o Conclusions

3.1 Missions

Investigations were conducted based on inputs from various sources and analyses to
determine the most likely missions to utilize advanced spacecraft technology. The results
of these inputs indicated three prime mission categories:

o Apogee earth orbit missions to place satellites of various sizes into
geosynchronous earth orbit (GEO) using expendable launch vehicles (Delta,
Atlas, Titan, Ariane, Long March or Shuttle). These missions include NASA,
military and commercial applications for communications, surveillance,
tracking, earth observation and meteorology.

o Delta-V for earth orbit missions was considered another candidate mission. This
included such operations as altitude raising, circularizing and inclination
changing and orbit maintenance. The light satellite usage has become a more
significant part of the total missions for cheaper, better, faster spacecraft and the
philosophy to reduce risk of spacecraft (utilization of several small spacecraft to
achieve mission objective over one very large expensive spacecraft).

o Planetary orbit capture and soft landing missions
The best assessment of missions for 1994-2000 based on the evaluation conducted during

the last third of 1993 is presented in Table 3-1. The average number of missions was
defined as 27 per year for this seven year period although 37 per year was the average for
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the first three years (1994-1997). The lower number for the outer years was due to less
certainty. The requirements have been constantly evolving and changing in response to
market conditions associated with the world economy and political environment in
addition to technological improvements.

3.2 Applications - Light and Heavy Satellites/Spacecraft

Preliminary investigations were conducted based on inputs from various sources and
analyses were conducted to determine several likely missions which would utilize the
HIPES engine. Many of the selected candidates were considered as a result of direct
experience with them by TRW. Three representative general mission categories have been
selected which will be discussed.

In all of these applications, high-pressure engines presented an advantage over low-
pressure engines by providing higher performance (Isp) with less propellant, and
smaller/lighter engines for a given thrust level and expansion ratio. However, in pressure-
fed systems, propellant and pressurant tankage weight and pressurant weight may increase
which was the basic trade. The increased performance required less propellant and smaller
tankage while the higher pressure resulted in heavier tankage and more pressurant.
However, the heavier tankage and increased pressurant may be mitigated by the use of
composite, overwrapped tanks and pressure augmentation to decrease the pressurant. In
this trade, there was a minimum value in the weight function curve which defined the
optimum operating pressure for that particular mission/system. In addition to the weight
trade, propulsion system volume (engines, tanks, lines, etc.) was reduced as operating
pressures increased. In some applications minimum weight was considered most important
while in others minimum volume dominated.

3.2.1 Perigee/Apogee Earth Orbit Missions

Many space missions started with the spacecraft placed in a nominal 100 nm circular low
earth orbit (LEO) by the launch vehicle. Through one or more thrust applications, the
orbit was altered to its required operational conditions.

One important and popular operational orbit has been GEO, which is 19,323 nm circular
at zero degrees inclination. Most communication satellites have used this orbit because it
allowed ground users to employ simple nontracking antennae.

Two typical GEO missions were selected, which will have the maximum usage in the next
ten years. These included a lightsat earth science mission and a typical commercial
communications satellite. The lightsat mission selected was a proposed NASA-MSFC
Lightning Mapper satellite, utilizing GEO as a desirable orbit. The program goal was
established as placement of 1400 lbm of wet satellite weight into GTO, resulting in about
800 Ibm of dry weight in GEO to measure lightning events to provide storm warnings and
improve the understanding of lightning phenomenology. The typical commercial
communications satellite began with 5000 Ibm of wet satellite weight in GTO which




resulted in about 2900 Ibm of weight in GEO. A spacecraft delta-V of 5875 fps, which
represented the apogee circularization and plane change maneuver, was assumed for the
study.

3.2.2 Delta-V for Earth Orbit Missions

Earth orbit missions referred to relatively low earth orbits of various altitudes,
eccentricities and inclinations. These missions may or may not be placed into their required
operational orbits by the launch vehicle. If they are not, the spacecraft propulsion system is
required to perform the required delta-V to transfer from the launch-vehicle-delivered
initial orbit to the operational orbit. Once in an operational orbit, some missions required
that some orbit parameters be maintained by the spacecraft propulsion system throughout
the satellite lifetime. This orbit maintenance requirement included many different types of
delta-V maneuvers. The light satellite usage was considered second only to the
communication satellites.

For this study, the Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) mission
was selected for analysis as representative of a current, typical LEO mission. The launch
vehicle placed the spacecraft into an initial near-polar orbit of 275nm x 350 nm and 99.3
degrees inclination. The spacecraft integral propulsion system then performed perigee and
apogee burns to place itself into the final operational sun-synchronous circular orbit of 955
nm altitude. The TOMS-EP spacecraft weighed 636 1bm wet at launch vehicle separation
with the required mission delta-V of 1681 fps.

3.2.3 Planetary Orbit Capture and Soft Landing Missions

Planetary orbit capture (including lunar) has a unique minimum thrust requirement. These
missions usually are flown on a hyperbolic approach trajectory whereby the vehicle flys-
by-the body unless a retro-thrust has been applied to remove some of its velocity. The
orbit can be changed by retrofirings of the low thrust engine at perigee/apogee for
efficiency. This has been a major advantage of liquid rocket engines as opposed to solid
rocket motors which must burn to depletion and cannot be restarted.

Planetary soft-landing has another unique set of requirements. For these missions, a
minimum thrust level is required to overcome gravity and allow a near zero impact
velocity. These missions often begin with the vehicle in planetary or lunar orbit where the
landing site can be accurately targeted and/or changed. Constant retro-thrust is applied to
break out of orbit and start the descent. The thrust is then varied as the descent contmued
to touchdown, following a predetermined acceleration profile.

MESUR was selected due to the fact it is a NASA science mission involving the sofi-
landing of 16 vehicles, named Network, on the surface of Mars in 1999-2003. As part of
this mission, a separate data-relay spacecraft will be launched to orbit Mars for providing a
communication link between the surface craft and earth. The wet spacecraft weight of
4000 Ibm at launch vehicle separation requires a total mission delta-V of 11,800 fps.




3.3 Missions Summary

The results of the mission investigation indicated the predominance of spacecraft missions
fall into two categories: apogee earth orbit missions to place satellites of various sizes into
GEO and delta-V for earth orbit missions. In addition there is a small number of planetary
missions. The largest number of missions are considered in the medium to intermediate
payload range with a significant number in the small (lightsat) payload range. The trend
selected by the agencies is to use small, better, cheaper satellites to perform missions over
the very large and and expensive satellites to reduce assets at risk. Therefore, the missions
analyzed in the system studies evaluated the following:

o Commercial satellites into GEO (medium to intermediate class)

o MESUR which included a Mars data-relay spacecraft to provide a
communication link between the surface craft and earth (medium class)

o Lightning Mapper (small to medium class)
o TOMS-EP earth orbit mission (small class)
3.4 Propellant Selection

Over the last three decades, flight-qualified space engines utilizing earth-storable
propellants have been limited almost exclusively to N,O;-MMH for bipropellant systems
and N,H, for monopropellant systems. As a consequence, the demand for these

- propellants have resulted in their ready availability and relatively low cost. Both
test and launch facilities have routinely stored and used these propellants, and ground
crews have developed well-established handling procedures to minimize the health risks
associated with exposure. In addition, material compatibility issues have been clearly
defined and as a result, the design of propulsion system components utilizing these
propellants have become rather straightforward.

TRW achieved a significant milestone in the development of bipropellant engine
technology by qualifying the Dual Mode Liquid Apogee Engine (DM-LAE). This engine
used N,H, instead of MMH as the fuel and offered significant spacecraft weight savings by
virtue of its higher performance (Isp) over N;O,-MMH. TRW has recently demonstrated
Isp=328 Ibf-sec/lbm on an Advanced Dual Mode Liquid Apogee Engine (ADM-LAE).

The combination of already demonstrated high performance and mature status of
production, handling and component/material compatibility has led TRW to baseline
N>0;-N;H, as the preferred propellant combination for the HIPES program.




3.5 System Analyses

Systems analyses to determine the effect of varying engine thrust and chamber pressure on
total propulsion system weight were conducted for the four missions discussed -
commercial satellites into GEO, MESUR data-relay spacecraft, Lightning Mapper and
TOMS-EP. The analyses compared the use of both pressure-fed and pump-fed dual mode
propulsion systems using N,O4-N,H, and bipropellant systems using N,0,-MMH. Since
the engine performance (effects propellant load), pressurant weight, engine weight, pump
weight, and propellant and pressurant tank weights have been the principle factors that
change as the engine chamber pressure was varied, only these factors were examined in
the trade study; it was assumed that variations in the weights of the remaining propulsion
feed system components for different operating pressures were negligible compared to the
principal factors.

The engine performance used in the analyses for both N;O4-N,H; (O/F=1.0) and N,O,-
MMH (O/F=1.65) at varying thrust levels (50-100 Ibf) and chamber pressures (100-1000
psia) is presented in Figure 3.5-1. These values of specific impulse were obtained by
analysis using two-zone two dimensional kinetic (TDK) with boundary layer losses. These
values of specific impulse were based upon the use of rhenium radiation cooled engines
with a nozzle expansion ratio (g) of 150 (typical for the length constraint of a lightweight
satellite). The assumptions for the systems analyses are summarized as follows:

Propellant Residuals Ullage Volume
N204-N2H4 Ox=1 % Fuel=3 % 1%
N>O.-MMH 0x=3% Fuel=3% 1%

Propellant Tanks - Graphite fiber epoxy overwrapped tanks with aluminum liner
Pressurant Tank - Graphite fiber epoxy overwrapped tank with aluminum liner

The results of the systems analyses are presented in F igures 3.5-2 through 3.5-5 for the
four types of missions. Figure 3.5-2 (Communication Satellite-COMSAT) showed the
pump-fed system payload weight for a length constrained nozzle was fairly flat from
Pc=500-1000 psia while the pressure-fed system payload weight for a length constrained
nozzle maximized at Pc=300-500 psia. Figure 3.5-3 (MESUR) showed the pump-fed
system payload weight for a length constrained nozzle was fairly flat from Pc=500-1000
psia while the pressure-fed system payload weight for a length constrained nozzle was
relatively insensitive from Pc=100-500 psia. Figure 3.5-4 (Lightning Mapper-LM) showed
the pump-fed system payload weight for a length constrained nozzle was fairly flat from
Pc=500-1000 psia while the pressure-fed system payload weight for a length constrained
nozzle maximized at Pc=500 psia. Figure 3.5-5 (TOMS) showed the pressure-fed system
payload weight exceeded the pump-fed system payload and was fairly flat from Pc=500-
1000 psia. A comparison of N,04-N,H, and N,O,-MMH propellant combinations for both
pressure-fed and electric pump-fed systems is presented in F igure 3.5-6 and indicated the
hydrazine fuel with its higher performance increased the spacecraft payload by 1-7% over
the MMH fuel. ’
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In summary Figure 3.5-7 showed that the payload at Pc=500 psia was within 1.5% of the
maximum for both pressure and pump-fed systems except for Mesur(within 4%). The
overall assessment was that the HIPES engine was most beneficial for lightsats with
significant improvement in payload and fit within the spacecraft envelope due to its small
envelope resulting from the high pressure (Pc=500 psia). For the large spacecraft, the 100
Ibf class engines operating at Pc=100-125 psia were beneficial. TRW has been a leading
producer of lightsats with such lightsats as TOMS, STEP, ROCSAT and SSTI. Figure
3.5-8 showed a comparison of the payload increases the HIPES engine would make on
typical TOMS and Lightning Mapper spacecraft.

3.6 Propulsion System and Engine Requirements

As a result of the system analyses, preliminary system requirements were established for
both a pressure-fed system and a pump-fed system. The preliminary requirements for both
the pressure-fed and pump-fed systems is presented in Table 3.6-1.

Using the systems analyses and the preliminary systems requirements, a set of preliminary
engine requirements was established. The engine requirements and operation are
considered irrelevant as to pressure-fed or pump-fed systems as long as the engine inlet
conditions are properly set. The preliminary engine requirements are presented in Table
3.6-2.

3.7 Conclusions

The greatest mission potential for the HIPES engine has been defined as apogee earth
orbit missions to place satellites into GEO and delta-V for earth orbit missions. The trend
selected by the various agencies has been to use smaller, better, cheaper satellites to
perform these missions to reduce assets at risk.

As a result of the system studies which investigated pressure-fed, turbo-pump-fed and
electric pump-fed systems, the electric pump-fed system maximized payload into orbit
using N,0;-N,H;, at higher chamber pressures although operation required 1.3 -2.1 kw
power for single or dual engine operation. The turbo-pump-fed system offered no
advantage over the other systems. The pressure-fed system was determined to be better or
the same for lightsats where power is usually limited.

Therefore, the HIPES engine development was focused on an engine operating at the
following conditions:

Thrust (Fx) 50 Ibf

Mixture Ratio (O/F) 1.0

Propellants N204-N2Hy
Chamber Pressure (Pc) 500 psia
Specific Impulse (Isp«) 330 Ibf-sec/lbm
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The HIPES engine development was based on these conditions during the Basic Program.
This development allowed the engine to be used in either a pressure-fed or electric pump-
fed system. The major challenge of development is demonstration of operation at 500 psia
chamber pressure with a specific goal of 330 Ibf-sec/Ibm with thermal characteristics
compatible with long duration firings and associated life.

The HIPES engine provides major benefits to lightsat applications where volume and/or
length is constrained. Payload increases to these lightsats can be increased by 10-20%
depending on the mission.
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TABLE 3.6-1
PROPULSION SYSTEM REQUIREMENTS

System Definition:
Integral Propulsion System

Dual Mode Orbit Boost or Delta-V Subsystem - impulse to place satellite
into GEO from parking orbit established by the expendable launch
vehicle or provide Delta-V for an earth orbit satellite

Reaction Control Subsystem (N,H,) - necessary torques to control
spacecraft attitude about all three axes and necessary impulse to
accomplish 0.1 degree inclination limit for 10 years (N-S + E-W)

for GEO satellite or necessary torques to control spacecraft attitude
control for earth orbit satellite

Disposal - provide impulse to move the spacecraft into a disposal orbit at
the end of its operational life

Configuration

Major Components

Pressurization: GHe - 7500 psia pressure regulated to tank pressure
Graphite/epoxy overwrapped tank with aluminum liner

Propellant Tanks: Oxidizer (N,O,) and Fuel (N>H,) - Cylindrical tanks with
elliptical heads & graphite/epoxy overwrapped with a maximum
pressure of 700 psia for pressure-fed system and 50 psia for pump-
fed system

Engines:

Thrust (Fx) - 50 Ibf each - one or two per system using single seat
valves

Operation - steady state with maximum firing duration of 1800
seconds

Mixture ratio (O/F) - 1.0

Life - 4000 seconds (Qualification - 6000 seconds)

Specific Impulse (Isps,) - 330 Ibf-sec/lbm

Inlet pressure to engine - 650 psia

Engine weight - 3.5 Ibm maximum

Engine length - 13.4 inches for inline valve configuration

10.0 inches for stacked valve configuration
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Heaters required to prevent propellant freezing
System:

Delta-V - 5875 fps
RCS Delta-V - dependent on specific mission
Losses: Residuals - 1% oxidizer & 3% fuel Ullage - 1%
Cleanliness - Particulate matter below 50 microns
Electrical - 24-34 Vdc using electrical harness to components - pigtails
used on all components
Mechanical interface - three point engine mount with tube stubs for
welding to system manifold
Thermal environment
Interior of spacecraft: 50-80F
Exterior boundary conditions: Worst case solar inputs
Worst case cold-exposure to deep space with no solar inputs
Random vibration:
Qualification: 14.1 g-rms
Acceptance: 10.0 g-rms
External leakage for system (exclusive of engine/valves) - 15 scc/hr GHe
External leakage for engine/valves - 5 scc/hr GHe per propellant side
Delta pressure between oxidizer and fuel tanks - +5 psia
Engine alignment - 0.5 degree
Mixture ratio control: 1.0+0.08 over temperature and pressure tolerances
Operating life: 10 years + 4 years storage
Reliability: 0.995 with no single point failures of active components
System dry weight - TBD
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TABLE 3.6-2

ENGINE REQUIREMENTS
Thrust (F,) - 1bf 50+2.5
Propellants N,04-N,H,
Mixture Ratio (O/F) 1.0+0.03
Specific Impulse (Isp.) - Ibf-sec/lbm 330
Inlet Pressure - psia 650+50,-10

Propellant Inlet Temperature - F
System Mixture Ratio (O/F)

Life - sec

Maximum Continuous Firing - sec
Operation

Operating Voltage - Vdc

Engine Length - inches

Engine Diameter - inches
Heaters

Valve Seat Leakage (scc/hr Ghe)
Random Vibration

Oxidizer - Fuel Inlet Pressure Variation
Alignment

Engine Weight - Ibm

Contamination Control

Valve Characteristics
Pull - in Voltage - Vdc
Dropout Voltage - Vdc
Open Response - ms
Close Response - ms
Maximum Pressure - psia

Engine Cold Starts

Engine Roughness

Gas Ingestion

Oxidizer Depletion

Heat Shield

70410 (excluding heat soakback)
1.0+0.08(includes P & T variations)
4000 (Qual - 6000)

1800

Steady state

24-34

10.0 - stacked valves

13.4 - inline valves

7 maximum

Required to prevent propellant
freezing

5 per valve seat

Qual - 14.1 g-rms

Acceptance - 10.0 g-rms

Fuel = +5 psia of oxidizer pressure
0.5 degree

3.5 maximum

Particulate matter below 50 microns
Valve inlet filter-25 microns

19 maximum

>2

<30

<30

700

25

+12%

2in’

Must have capability

No impact on engine temperature
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4.0 DESIGN and FABRICATION
4.1 Design

The design philosophy used on the HIPES engine was to design a testbed engine that
incorporated the test results of other TRW programs applicable to HIPES, design
hardware that met the NASA downselect criteria, incorporated flexibility into the design
to facilitate parametric testing, incorporated interchangeability of parts to allow for
assessments of various configurations and test flexibility to allow for expedious testing in a
cost effective manner.

The guidelines used were to design an injector with replaceable elements for evaluation of
injector slot geometry, utilized shimmable oxidizer and fuel elements to evaluate variations
in velocity and momentum and incorporated a regenerative cooling passage near the
chamber for assessment of the benefits/need. Different thrust chambers were utilized for
different objectives. Workhorse copper heatsink thrust chambers were utilized to evaluate
L* vanability and Pc variability at constant thrust. A water-cooled thrust chamber was
utilized to determine the heat absorbed to allow a prediction of the wall temperatures for
the rhenium thrust chamber and allowed an assessment of the dome temperatures in long
duration firings. A rhenium thrust chamber was also designed to evaluate performance and
operation at high chamber pressure with a high performance injector.

A model, previously developed by TRW to assist in the design/analysis of TRW coaxial
pintle injectors, was used to design the HIPES injectors. This model integrated the
performance and thermal aspects of the engine. As a result, the model predicted
atomization of the fuel from the injector design variables, calculated droplet trajectory,
vaporization rate and penetration distance, predicted the fraction of fuel flow impinging on
the injector splash plate as liquid, accounted for increasing wall zone mixture ratio along
the chamber wall, calculated film coefficient as a function of chamber axial position and
chamber wall temperature and finally predicted the C* based on the mixture ratio
distribution of the wall and core zones at the throat. Correlation of this model with various
TRW hot fire data from a number of programs has proven successful. The predicted
performance of the HIPES engine was a specific impulse of 330 Ibf-sec/Ibm with a throat
wall temperature of approximately 3500F.

The testbed engine consisted of a flexible injector and three types of thrust chambers. The
injector consisted of a shimmable design to allow variations in injection velocity and
momentum with ease in real time testing allowing for efficient cost effective testing. The
injector incorporated replaceable elements to allow evaluation of slot geometries (number
of slots, slot aspect ratio and open area between slots) for efficient effective wall control in
real time cost effective testing. Three different types of thrust chambers were designed to
demonstrate the overall objectives. Copper heatsink thrust chambers were designed to
operate at 400, 500 and 600 psia chamber pressures at a constant 50 1bf thrust.
Thermocouples were brazed into the inner wall of the thrust chamber to allow a
determination of heat load and estimate of gas temperatures. Spool pieces were designed
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to allow variation in L*. The copper heatsink chambers were designed for 5-sec tests. The
HIPES heatsink engine is presented in Figure 4.1-1. In order to ascertain the overall
engine capability, a water-cooled thrust chamber was designed to determine the heat
absorbed to predict the rhenium engine wall temperatures and allow long duration testing
to determine head end stabilized temperatures. The water-cooled HIPES engine is
presented in Figure 4.1-2. A bolt-on rhenium engine was designed using a coated powder
metallurgy rhenium thrust chamber to validate performance and demonstrate operation
with high performance injector and associated high wall temperatures at high pressures.
The HIPES rhenium engine is shown in Figure 4.1-3. As a result of the design and
analyses of the testbed engine, a preliminary flight engine concept is shown in Figure 4.1-
4,
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3.0 PERFORMANCE AND THERMAL DATA/ANALYSIS

A description of the test conduct and presentation of the data obtained from the hot-fire
tests are discussed in this section. Any performance and thefnal trends resulting from this
test program will also be discussed.

An overview of the test conduct for the HIPES basic program is presented in Figure 5.0-1.
Each block of testing will be discussed in detail in the corresponding subsections. The
primary objectives of the test program were:

o evaluated the performance characteristics for four different injectors

o determined the effects of varying mixture ratio and total flowrate on the engine
performance '

o investigated the performance and heat transfer at three different chamber

" pressures at constant thrust

o ascertained the gas-side heat transfer rates into the injector dome

o demonstrated the adequacy of coated PM rhenium engine operation to withstand
the thermal environment at high performance and high chamber pressure

0 anchored thermal and performance analysis models with test data

o predicted the operating characteristics of a flight-type engine

Engine performance was characterized through the measurement of characteristic velocity
(C*). The observed C* was combined with the theoretical thrust coefficient (Cf) to yield
projected specific impulse (Isp). Calculations of Cf were made using the standard NASA
TDK program with a defined geometry of HIPES engine (100% bell nozzle) with an
expansion ratio of 150:1. The predicted Cf as a function of both chamber pressure (Pc) and
mixture ratio (O/F) is shown in Figure 5.0-2. These thrust coefficients consequently served
as the basis for the Isp projections made throughout this report.

5.1 HEAT-SINK COPPER CHAMBER TESTING

The initial testing of the HIPES workhorse engine began with uncooled copper thrust
chambers using N>O,-N,H,. These chambers had sufficient wall thicknesses to provide
sufficient heatsink capability to allow test durations of at least 5 seconds, which was
adequate to obtain comparative steady-state performance (C*) data.

5.1.1 INJECTOR EVALUATION

The first objective of the heatsink engine tests was to evaluate four different injector
element candidates for selection of a baseline element to be used in subsequent testing. All
of these tests were conducted at the nominal mixture ratio of 1.0, nominal flowrate of
0.152 Ibm/sec, and nominal chamber pressure of 500 psia. Five to seven tests were
performed on each injector to measure C* variation resulting from changing the oxidizer
and/or fuel injector gaps (velocities). A test summary is provided in Table 5.1.1-1. Injector
selection was based on a qualitative assessment of combustion efficiency, maximum injector
dome temperature, and transient chamber throat temperature. The effect of varying injector
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gaps on measured C* is presented in Figure 5.1.1-1. It was apparent that the combustion
efficiency for most tests fell within a relatively narrow range of 98.0-99.5% (based on an
ODE C* of 5860 fi/sec), and as a result of this finding each injector was judged suitable
from a performance standpoint. Injector selection was therefore made based on thermal
criteria, specifically the injector dome and chamber throat temperatures. A comparison of
the average chamber throat temperatures observed for these tests at 4.7 sec into each test is
presented in Figure 5.1.1-2. This data indicated that the -1 and -2 injectors yielded lower
steady-state chamber temperatures than either the -3 or -4 injector. Finally, F igure 5.1.1-3
assessed the maximum injector dome temperatures and indicated that the thermal
environment in the head-end region was more benign for the -2 injector than the -1 injector.
As a result of a combination of high performance and relatively lower injector and chamber
temperatures, the -2 injector was selected as the best candidate for proceeding into the
remainder of the test program.

It should be noted that in addition to the aforementioned desirable characteristics, no
evidence of "popping" was observed on the chosen injector. Popping is currently believed
to be the result of the reaction of a small amount of hydrazine that, for some injectors at
certain gaps under the right test conditions, can become trapped between the gap formed
between the injector splash plate and the chamber wall. This popping was occasionally
observed on other engine programs and has been known to deform the splash plate if the
magnitude of the disturbance is sufficiently severe. In this group of tests, the last test on the
-1 injector as well as every test on the -4 injector exhibited minor popping shortly after
startup, as evidenced on the accelerometer and chamber pressure oscillograph traces. Post-
test inspection revealed that this popping knocked off some of the outer layers of the
disilicide coating near the tip of the splash plate, but did not result in any metal deformation.

A performance "map" of the -2 baseline injector is provided in Figure 5.1.1-4. The trends
illustrated here are quite similar to those observed on previous engines. For instance, for a
given oxidizer gap, as the fuel gap is increased, performance usually increased to a
maximum and then decreased. Also, for a given fuel gap, a decrease in oxidizer gap usually
resulted in higher injector dome temperatures. The lines of constant C* overlaid on the data
can be considered somewhat speculative, but they provided a possible means of gaining
insight into the response of a given injector to a change in either the oxidizer or fuel gaps
(velocities).

5.1.2 CHAMBER PRESSURE EVALUATION

Having selected the baseline injector, the next objective was to expand the operating
envelope by testing off-nominal mixture ratios and total propellant flowrates. The O/F and
Wt envelope evaluated is shown in Figure 5.1.2-1. This matrix of tests was conducted on all
three heatsink chambers (500, 600, and 400 psia, sequentially) for the establishment of the
effect of chamber pressure on combustion performance and heat transfer. The test
conditions and results from this phase of testing are summarized in Table 5.1.2-1.
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The performance results are presented in Figure 5.1.2-2. The preliminary data indicated that
the performance was higher at a chamber pressure of 500 psia than at 600 or 400 psia. For
reference, the predicted ODE C* as a function of chamber pressure is provided by Figure
5.1.2-3. Also shown is the predicted C* based on the film cooling model, which indicated
that performance is expected to be monotonically increasing with chamber pressure. A
summarization of the average throat temperature versus chamber pressure for the various
test conditions is presented in Figure 5.1.2-4, and supported the conclusion that
performance was indeed higher with the 500 psia heat-sink chamber than for the other two
chambers. Post-test inspection of the three chambers indicated that the 500 psia chamber
had some copper erosion in the head-end, unlike the 400 and 600 psia chambers. This
erosion was probably caused by its greater usage (158 sec compared to only 40 sec on the
other two). In addition, the 500 psia chamber was exposed to testing on all the injectors,
and some of these tests were conducted with injector gap settings that further accelerated
the erosion process. As a result, the 500 psia heatsink data cannot be accurately compared
with the data from the 400 and 600 psia chambers. In essence, the chamber with a
roughened headend promoted enhanced mixing of the fuel-rich wall zone boundary layer,
which acted in increasing the wall zone mixture ratio at the throat. This served to increase
both performance (due to the more uniform O/F distribution) as well as throat temperatures
(due to the higher wall O/F at the throat). The resulting performance trend as a function of
chamber pressure (after dropping the 500 psia heatsink data) is presented in Figure 5.1.2-5.
The figure indicated an increase of about 50 ft/sec in C*(~1%) for a change (increase) in Pc
of 100 psia for all test conditions (O/F and Pc). This increase cannot be attributed solely to
Pc, however, since the L* differed between the 400 and 600 psia chambers. A discussion of
this trend is presented in the next section- the results of the 500 psia water-cooled chamber
tests. The average throat temperature and maximum observed injector dome temperature
are presented in Figure 5.1.2-6 and 5.1.2-7 as a function of chamber pressure after deletion
of the 500 psia data. The trends indicated that the slopes are practically equal for all the
various test conditions, indicating that the effect of higher chamber pressure was roughly
constant over the range of mixture ratios and total flowrates tested.

5.2 WATER-COOLED COPPER CHAMBER TESTING

Following the heatsink tests, a considerable amount of testing was conducted utilizing a
water-cooled copper chamber. This permitted longer test durations (60-120 sec) so that
steady-state injector dome and chamber heat transfer rates could be obtained. The majority
of tests were performed with hydrazine; however, MMH was also evaluated as an alternate
fuel.

5.2.1 WATER-COOLED CHAMBER TESTS WITH HYDRAZINE

All of these tests were conducted with the -2 baseline injector element set at an oxidizer gap
0f 0.0060" and a fuel gap of 0.0034. Since the 500 psia heatsink data was compromised
due to the condition of the combustion chamber, these tests allowed the determination of
performance data to be made so that a more valid comparison could be made with the 400
and 600 psia heatsink data. The same O/F and Wt excursion was performed on the water-
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cooled chamber (reference Figure 5.1.2-1), and a summary of this test phase is presented in
Table 5.2.1-1.

The first trend noticed during this series of tests was that the performance was significantly
lower when compared to that of the 500 psia heat-sink chamber. The performance data for
both the water-cooled and 500 psia heatsink chambers as a function of mixture ratio are
presented in Figure 5.2.1-1. The water-cooled C* was on average 60 fi/sec lower than that
observed for the corresponding heatsink tests. The surface condition of the water-cooled
chamber was much smoother than the 500 psia heatsink chamber and was very similar to
the 400 and 600 psia heatsink chambers. The observed drop in performance (as expected)
lended credibility to the explanation that the uncharacteristically high performance for the
500 psia heatsink tests was in part due to the roughened surface of that chamber. F igures
5.2.1-2 through 5.2.1-4 included the following: heatsink data obtained at both 400 and 600
psia and water-cooled engine data obtained at 500 psia for measured C* versus chamber
pressure for each of the three propellant flowrates evaluated. These figures illustrated the
consistent trend of increasing C* with increasing Pc. Measured C* efficiency versus
chamber pressure is presented in Figure 5.2.1-5 and clearly indicated an empirical trend of
increasing efficiency at higher pressure. However, a portion of this increased performance
was attributed to an increase in L*, and this effect will be discussed in more detail later.
Finally, Figure 5.2.1-6 indicated that higher specific impulse could be expected as Pc and/or
L¥* increased. -

The location of the thermocouples for the water-cooled tests is shown in Figure 5.2.1-7,
while the thermal data obtained from that instrumentation is summarized in Table 5.2.1-2.
The variation in injector heat load as a function of mixture ratio for two different propellant
flowrates is presented in Figure 5.2.1-8. For a given total flowrate, the heat transfer rate to
the injector dome increased for higher mixture ratio. As the mixture ratio increased, the
oxidizer momentum became greater relative to the fuel, causing the resultant spray cone
angle to lessen. This exposed more of the injector dome to the recirculation zone in the
headend region, thereby increasing the amount of surface area that the oxidizer droplets
must cool. In addition, it appeared that at higher mixture ratio the amount of oxidizer
droplets available to recirculate also decreased, which also resulted in increased injector
dome temperatures. The heat loads likely increased for higher propellant flowrates at a
given mixture ratio because greater chamber pressures result in larger heat transfer
coefficients. Also, the increased momentum of the propellants caused by the higher
flowrates resulted in less recirculated liquid oxidizer droplets available for film cooling of
the injector headend.

The measured chamber heat loss as a function of mixture ratio for the three total propellant
flowrates tested is presented in Figure 5.2.1-9. Total chamber heat loads increased with
higher mixture ratio caused by the greater mixture ratio in the wall zone along the entire
length of the chamber. Chamber heat loads increased with higher flowrates because of two
reasons. First, the film cooling model predicted slightly greater mixing of the fuel-rich wall
zone at higher chamber pressures, resulting in slightly higher gas temperatures along the
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wall. Secondly, and probably more importantly, the higher chamber pressures yielded
increased heat transfer coefficients, which naturally resulted in greater measured heat loads.

5.2.2 WATER-COOLED TESTS with MMH

A limited number of tests were conducted using MMH as an alternate fuel. Due to the
differences in total flowrate, mixture ratio, and fuel density, the optimum injector gaps
determined for hydrazine were not applicable for these tests. As a result, MMH testing
began with a series of short duration tests to ascertain acceptable injector gap settings
(velocities). These were found to be 0.0080" for oxidizer and 0.0026" for fuel, Following
this, two longer duration tests were conducted to determine performance and steady-state
heat transfer rates. The MMH tests conducted are summarized in Table 5.2.2-1.

Combustion performance with MMH was nearly identical to that observed for hydrazine
(98.0- 98.7%)), although as shown by Figure 5.2.2-1, delivered C* is approximately 120
ft/sec less than can be achieved with hydrazine due to theoretical differences in available
performance. Like the hydrazine test results, performance was observed to increase with
total propellant flowrate. Specific impulse of over 327.5-329 Ibf-sec/lbm was achieved with
the NTO/MMH propellant combination at a mixture ratio of 1.60.

Injector temperature data is presented in Table 5.2.2-2. The injector dome heat transfer
rates that were measured for the MMH tests were equal to those measured for hydrazine, as
shown in Figure 5.2.2-2. The chamber heat loss shown in Figure 5.2.2-3 was significantly
greater for the MMH tests. This was due to the higher gas temperature in the chamber wall
zone for the MMH tests.

5.3 RHENIUM CHAMBER TESTING

The final phase of testing was conducted with a PM (powder metallurgy) rhenium chamber
with an electroplated iridium coating on both interior and exterior surfaces. In addition, the
exterior surface was plasma sprayed with a hafnium oxide coating to increase the radiative
emissive capability of the chamber. Blistering of the iridium coating was evident in two
areas downstream of the throat prior to hot-fire testing. The iridium coating was known to
have been defective in places due to contamination induced during the manufacturing
process. This contamination caused the iridium coating to blister during the stress relief
cycle imposed on the chamber prior to testing.

Three tests were conducted to demonstrate that the rhenium chamber and its coatings could
withstand the thermal environment imposed by the combustion process, starting with a 3

sec checkout test, followed by a 10 sec test, and concluding with a 30 sec duration test.
Post-test inspection after the 30-sec test revealed two interior surface gouges in the rhenium
substrate that began just downstream of the throat plane where the original defects
occurred, indicating the blisters had opened. New blistering of the iridium coating was also
evident in areas farther downstream in the nozzle. The observed damage was considered
severe enough to mandate termination of subsequent testing. Although the rhenium testing
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was abbreviated, the test series was considered successful in that the iridium coating in the
region with the most severe thermal environment (the converging section) appeared to have
survived completely intact. The PM rhenium thrust chamber and its accompanying coatings
demonstrated viability as a combustion chamber that can withstand the thermal environment
associated with a high- performance injector operating at high chamber pressures.

Performance data obtained on the last long duration test was in excellent agreement with
the trends derived from the copper heatsink and water-cooled tests. Expected C* based on
previous testing was 5755 fi/sec and the observed C* was actually 5755-5760 ft/sec. Figure
5.3-1 integrated the performance data obtained for the various configurations tested
throughout the basic test program, and summarized the effects of both Pc and L*. The
expected trend for C* versus L* as predicted by the film cooling model is shown for a
constant chamber pressure of 500 psia. The actual performance values obtained for the
water-cooled copper chamber and the rhenium chamber can be seen to be consistent with
this trend. The trend also indicated that for an L* of 36", which was representative of the
500 psia heat-sink chamber, the expected C* was 5740 ft/sec. This value was graphically
consistent with the performance levels measured with the 400 and 600 psia heat-sink
chambers. Figure 5.3-1 indicated that the majority of C* increase observed while increasing
chamber pressure from 400 to 600 psia was actually due to the accompanying increase in
L*. The figure implied that of the 100 ft/sec C* rise obtained at the higher chamber
pressure, only about 30 fi/sec was actually due to the increased Pc, while nearly 70 fi/sec
can be attributed to the higher L*. Throat temperatures and chamber axial temperature
profiles were determined with a combination of optical 2- color pyrometers and infrared
imaging system. The axial temperature profile as measured by the infrared system and also
the predicted profile generated by the film cooling model is presented in Figure 5.3-2. This
figure showed that the measured temperature in the headend region of the chamber
increased much more rapidly than predicted by the film cooling model. The model also did
not predict the rather flat temperature profile that was observed along the first half of the
chamber. This may have been due to the fact that the model assumed turbulent mixing
throughout the chamber when in reality the gas flow was initially more laminar than
expected.

Data from the 30 second test indicated that the injector had not quite reached thermal
equilibrium. The heat load to the injector, shown in Figure 5.3-3, would have stabilized at
approximately 1.5 Btu/sec. Analysis indicated that the oxidizer regen passage could remove
3 Btu/sec at the critical heat flux. These results, presented in Figure 5.3-4, indicate that the
regen channel would be in the initial stages of nucleate boiling at the expected 1.5 Btu/sec
heat load. External dome temperature predictions have shown that maximum steady-state
injector temperatures would be approximately 500 °F.
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5.4 TEST SUMMARY

The TRW HIPES basic program test series was extremely successful. Measured
combustion efficiency was well above the original goal set at the beginning of the program.
A significant amount of testing was conducted on several different hardware configurations.
Data obtained from these tests produced consistent engineering trends that will prove
valuable in the next design phase as the HIPES engine evolves. Preliminary results have
indicated that in addition to high performance, the predicted maximum injector
temperatures will be acceptable and the proposed chamber material will be compatible with
the induced thermal environment.
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6.0 CONCLUSIONS

The HIPES engine demonstrated high performance at high chamber pressure with both
N204-N,H, and N,O,-MMH yielding the following:
Isp., = ~337 Ibf-sec/lbm with N,O4-N,H; at Pc =500 psia at F,, = 50 Ibf
Isp,, = 327.5 Ibf-sec/lbm with N,O,-MMH at Pc=500 psia at F,, =50 Ibf
A powder metallurgy rhenium engine demonstrated operation with high performance at
high chamber pressure (500 psia) which indicated the viability of this concept.

The HIPES engine upon development will provide major increases in lightsat payloads

which provides major improvements in the spacecraft. TRW is a major lightsat producer
and will use the HIPES engine upon completion of development.
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